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Abstract 

The use of visualization on the Poincaré sphere for the analysis of self-organization in 
semiconductors is quite exotic, however, it does not have physical reasons that would make it 
impossible to implement this approach. We propose to use the Poincaré sphere visualization 
method to analyze fluctuations and oscillations in the experimentally measurable concentra-
tions of different ions in self-organizing media, including semiconductors and their precur-
sors under conditions of photoinduced self-organization and microwave-induced self-
organization (as well as to analyze the oscillatory impulse wave behavior of their self-
organization products in ultrafine form as dispersed semiconductor devices). Approbation of 
this principle is carried out by means of projection onto the sphere of phase portraits of these 
types of vibrations, which is equivalent to the implementation of an operator that  projects a 
2D planar graph onto a 3D sphere.  
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1. Applications of the Poincaré sphere in optics 
Currently, various application areas of the Poincaré sphere are known - from optics to 

classical and quantum mechanics [1]. The objects whose behavior is studied using Poincaré 
spheres can vary from conventional polarization systems in optical paths to polarimetry in 
toroidal chamberswith magnetic coils for magnetic plasma confinement for controlled 
thermonuclear fusion [2]. If in the 1970s each new application of this type of visualization 
was of significant interest to most physicists in related disciplines (for example, the appli-
cation of Poincaré spheres for analyzing the compression of materials [3]), then by the end 
of the 1980s the application areas have become limited to optics, where special software 
packages have been developed for representation of the measurement data and computa-
tional models, using classical formalisms, systems of equations and rendering algorithms 
[4]. 

Already in the 1990s, fairly similar articles began to appear (based on the same software 
tools for 3D visualization and ray tracing) for various, usually optical and quasi-optical or 
radio-optical applications, which was associated with the spread of simple and affordable 
software packages / mathematical apparatus provision. One of the first articles of this type 
(“One more application of Poincare sphere”), although written even before the develop-
ment of digital visualization tools on the Poincare sphere, describes the already known (by 
the mid-1990s) areas and directions of the Poincaré sphere application in polarization op-
tics [5]: "In the course of the last decade, several ways of exploiting the Poincaré sphere 
were found so now it may be applied to the following problems in polarization optics: 
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1. One Stokes’ vector of light polarization state may  be prescribed to each point of the 
sphere surface, and reversely each point on the sphere corresponds to one state of polariza-
tion. 

2. One state of polarization of the quicker eigenwave (first eigenvector) of the aniso-
tropic medium may be prescribed to each point on the sphere surface. 

3. One eigenvector of polarizer corresponds to each point on the sphere surface. 
4. For a given ellipsis of light polarization state the phase shift <5 and the diagonal an-

gle may be read out. 
5. With the aid of the Poincaré sphere the state of light polarization may be deter-

mined after passing of the corresponding light beam through an arbitrary biréfringent me-
dium. 

6. With the aid of the Poincaré sphere the methods of analysis of light polarization 
state may be explained. 

7. With the aid of the Poincaré sphere the state and the degree of polarization of a light 
beam composed of two mutually incoherent light beams of different states and degrees of 
polarization can be determined. 

8. With the aid of the Poincaré sphere the general properties of nondichroic biréfrin-
gent media can be determined. 

9. With the aid of Poincaré sphere the operation principle of the measurement meth-
ods exploiting a polariscope with immediate or azimuthal compensators may be explained. 

10. With the aid of the Poincaré sphere the intensity of an arbitrary polarized light after 
its passage through an arbitrary polarizer (general Malus law) may be determined. 

11. Several calculation methods of the changes in polarization state due to reflection 
have been elaborated". 

Specifically, in the above cited work, the author sets a very close goal from the field of 
polarization optics: "In the present paper, we want to draw attribution to the fact that (with 
the help of the Poincaré sphere) also the intensities of both eigenwaves in an elliptical me-
dium on which an elliptically polarized light wave falls, may be easily determined" (the au-
thor's spelling is preserved throughout). Many similar applications were tested and put in-
to practice in a series of works by Dettwiller [6-10]. 

Later, polarization optics became the predominant application area of visualization on 
the Poincaré sphere [11,12], including laser polarization optics and fiber polarization optics 
[13,14], within which visualization problems for multi-mode fibers are of particular inter-
est [15], as well as the problems of light propagation in waveguides or optical resonators 
under the influence of external disturbances and nonlinear interactions of light with the 
medium, including applications of the coupled mode method [16,17]. Polarization mode 
dispersion (PMD) can also be visualized using Poincaré sphere [18] (although the first ap-
plications of the Poincaré sphere specifically for studying mode polarization in laser optics 
date back to the 1970s [19], as well as the first applications in coherent optics in general 
[20], these tasks are still relevant nowadays). It should be noted that a description of unpo-
larized and incoherent or partially coherent radiation using the Poincaré sphere is also 
possible [21,22]. 

Particularly complex, but also the most interesting, are the problems of studying beam 
modulation during coherent illumination of randomly inhomogeneous objects (surfaces 
with microroughness) or when passing a coherent beam through a medium with a spatially 
inhomogeneous refractive index [23], the problems of the optics of anisotropic media [24] 
and birefringent media [25]. However, from a mathematical point of view, of significant 
interest are the ellipsometry areas requiring the inverse problem solution, in which Poin-
caré spheres have been used since the 1960s [26], as well as propagation of the solitary 
waves, nonlinear beams and pulses (including in optical fiber), which also use the inverse 
problem method [27]. 

Thus, in the classic monograph by Akhmediev and Ankevich on nonlinear beams and 
pulses [28], in some cases the formalism and simulation results with visualization on the 



 

Poincaré sphere are used. For example, trajectories of periodic solutions with an oscillating 
phase with a visualization in the form of closed loops between two separatrices on the 
Poincaré sphere are given in Chapter 7 (“Pulses in nonlinear media with birefringence,” 
paragraph 7.13, p. 137, Fig. 7.5). Evolution of the Stokes parameters for a fast solitary wave 
propagating in a nonlinear medium is shown in the same section (numerical examples in 
paragraph 7.16, pp. 144-145). The Poincaré sphere is also used in Chapter 8 (“Pulses in 
Nonlinear Fiber Couplers”) to visualize trajectories for solving the nonlinear coupler prob-
lem (Figure 8.5, p. 162), where it is indicated that “in the problem of a fiber with birefrin-
gence, the elliptical singular point ... corresponds to the lower (slow) branch of the energy 
dispersion diagram, and in the problem of a nonlinear coupler a corresponding point ... 
corresponds to the upper branch" (i.e., antisymmetric state). In the numerical examples of 
this section (section 8.10, p. 165, Fig. 8.6 a-f), the evolution of the integral Stokes parame-
ters for pulses in a nonlinear coupler shows a variety of foci when the energy changes in a 
fiber with a single core. An example of visualization of the evolution of integral Stokes pa-
rameters for pulses in a nonlinear coupler from Fig. 8.6 of this monograph is shown in Fig. 
1. Trajectories of periodic solutions with an oscillating phase displayed in the form of 
closed loops between two separatrices on a sphere from Chapter 7 (“Pulses in nonlinear 
media with birefringence,” paragraph 7.13, p. 137, Fig. 7.5) are shown in Fig. 2. 

 

 
Fig. 1: Reproduction of the evolution of integral Stokes parameters for pulses with different 

energy values in a fiber with a single core from the monograph [28] (Fig. 8.6). 
 

Applications of the Poincaré sphere in problems of different types of modulation and 
description of the effects of the certain types of signal modulators are also of interest, in 
particular: 



 

1. Interference-polarization filters that produce a phase shift can be described using 
the Poincaré sphere [29], and in the fiber ring interferometers, the calculation of the non-
reciprocal geometric phase of counterpropagating waves can be carried out using the Poin-
caré sphere method [30]. This is a special case of analyzing the interference of polarized 
beams by the Poincaré sphere method [31]; 

2. Tunable half-wave plates can be described within the framework of formalism and 
visualization on the Poincaré sphere [32]; 

3. The opertaion of Kerr modulators (based on the quadratic electro-optical effect - a 
change in the value of the refractive index of the material is proportional to the square of 
the applied electric field) and photoelastic modulators, as well as the interpretation of 
measurements of the Kerr effect using the latter can be carried out using the Poincaré 
sphere [33]. 

 

 
Fig. 2: Trajectories of periodic solutions on the Poincaré sphere from the monograph [28] 

(Fig. 7.5). 
 

2. Applications of the Poincaré sphere in the radio fre-
quency domain. 

However, being a more general means of displaying wave processes than it is assumed 
by the vast majority of users (i.e., opticians), Poincaré spheres can also be used in the prob-
lems of propagation of radio frequency signals up to the microwave [34] and THz regions. 

Since the 1960s in the USSR, R&D was carried out with the application of the Poincaré 
sphere in the probabilistic analysis of polarization angles of partially  polarized signals and 
wave packets [35]. In the 1970s L.A. Zhivotovsky published a series of works on searching 
for the optima of receiving antennas by polarization to determine the maximum signal-to-
noise ratio, more precisely, “the signal-to-the sum of parasitic interference and noise ratio” 
as well as on separation of the signal from noise using the Poincaré sphere [36,37]. Much 
of this work was classified in the USSR, as it was intended for radar and air defense sys-
tems. Later, similar works were initiated abroad and published in the IEEE Transactions 
on Antennas and Propagation [38]. In this century, such works also continue, but their 
emphasis is shifted to the civil applications. For example, polarization measurements 
based on Poincaré spheres can be carried out in echo tomography, echo encephalography, 
echo cardiography, and echo methods of ultrasonic flaw detection. One of the first works of 
the 21st century using formalism and visualization of the Poincaré sphere was devoted to 
the analysis of co-polarized echo curves [39]. In the 2000s and 2010s in the problems of 
polarization optimization of the receiving antennas using Poincaré sphere methods, a radi-
cal change occurred, associated with the introduction of the new genetic and evolutionary 
algorithms [40], as well as machine learning. In this regard, at the moment the use of the 
Poincaré sphere as a unified means of recognizing signal patterns and their coordinate rep-
resentation comes to the fore. Thus, in geophysics, methods of measurement and neural 



 

network classification on the Poincaré sphere are becoming popular [41,42], including 
those using quaternions. Such physical problems are, in fact, two-stage unsupervised 
learning with the generation of new classes [43]. This is especially true for synthetic aper-
ture radars. 

On the other hand, in terahertz lensless microscopy similar representations can also be 
useful. Thus, from the optical (including UV) range up to the long-wave radiofrequency 
range, applications of Poincaré spheres for the analysis of wave signals [44] and processes 
can be found everywhere. So, where can we further extrapolate the applicability of this 
method / approach / technique? 

3. Towards the possibility of a general analysis of wave 
processes on the Poincaré sphere: a technical explication. 

However, in reality, the question should be posed more broadly. The fact is that, theo-
retically, a number of processes that have nothing to do with optics and radio waves can be 
also considered as the wave processes with polarization - from the well known concentra-
tion waves in heterogeneous media and oscillations in Belousov-Zhabotinsky reactions 
[45-50] up to the demographic waves [51-53] (we thank our colleague from Zelenograd, 
demographer D. Shevchenko, for the last example). In fact, any complex signals (that is, 
signals expressed through a phasor - a complex amplitude, the magnitude and argument of 
which are equal to the amplitude and initial phase of the harmonic signal) in physics can 
be represented on the Poincaré sphere [54]. 

Any oscillations that are described in biophysics using differential equations (ODE) and 
solved numerically can be described by the Poincaré sphere method. The trajectories of a 
polynomial differential system can also be described on the Poincaré sphere [55,56]. The 
singular points of the cubic differential system at the equator of the Poincaré sphere are 
valuable in the analysis and control of the corresponding processes [57]. Such problems 
were solved back in the 1960s [58-60]. Currently, such problems are solved using vector 
field formalism and visualization in the vicinity of the equator of the sphere. Within the 
former USSR, this direction is being most effectively developed by V.Sh. Roitenberg [61-
63]. The above formalism is of certain interest in the mathematical aspect. Its testing is 
carried out on the models of process and “abstract” oscillatory modes in the formal nota-
tion. 

However, application of the Poincaré sphere method on experimental self-oscillations 
and, more broadly, kinetic modes of reactions (such as Belousov-Zhabotinsky, Briggs-
Rauscher, Bray-Libavsky reactions, etc.) is rather scarce, and no one has applied it for 
analysis in heterogeneous and dispersed systems. Thus, the entire branch of research on 
the oscillations in dispersed semiconductors has not yet been combined with the analysis 
on the Poincaré sphere. Generally speaking, the only works on the Poincaré sphere that are 
somehow related to semiconductors are devoted to the analysis of the polarization plane 
rotation in semiconductor optical amplifiers [64], but this does not deal with the behavior 
of the semiconductor material itself. However, our experimental research held in the 
2000s demonstrates the applicability of the Poincaré sphere method on dispersed photo-
semiconductors, magnetic liquids, photoelectrets, and on oscillatory reactions (i.e. ion 
concentration oscillations). The above statement can be illustrated by the following exam-
ples: 

• Fig. 3 (a, b) shows a Poincaré sphere visualization with a limit cycle similar to that 
shown in Fig. 1 (a, b) or Fig. 2(a). 

• Fig. 3(c) shows a Poincaré sphere visualization with a focus similar to that shown in 
Fig. 1 (c-e). 

• Fig. 3 (d) shows a Poincaré sphere visualization with an unstable focus and a repel-
ler. 



 

• Fig. 3 (e, f) shows visualization results of lines of the kinetic regimes, similar to the 
individual solutions shown in Fig. 2 (b). 

We emphasize that, in contrast to the computational data for fiber optics and, more 
broadly, polarization circuits of integrated optics, the above images represent the real em-
pirical data obtained by one of the research groups from the Scientific Research Institute of 
the former RAS, which has been working on the self-organization and reaction-diffusion 
processes in ultradispersed and biopolymer-composite systems. At the turn of the decade, 
we were entrusted with the work (unfortunately, unclaimed after 2013) to analyze and vis-
ualize this data. This led to the appearance of such visualization formats. However, at the 
moment, the optimal code has not yet been created: the current visualization often does 
not maintain proportions and does not allow establishing the values along the coordinate 
axes, in fact, producing a simple projection onto a sphere (2012). 
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Fig. 3: Results of projective visualization of kinetic regimes on a sphere. 
 



 

4. Discussion: modern prospects for the development of 
the direction. 

As follows from the above material, visualization of oscillations on the Poincaré sphere 
can be useful for analyzing many processes associated with self-organization in different 
physical media, propagation of excitations in nonlinear physicochemical or biophysical 
systems with ion transfer (for example, in neural structures and in simpler networks based 
on myceliums, etc. [65-68]), as well as in computing systems based on them [69-73]. This 
visualization method can be considered sensu lato as a new type of 3D visualization of 
phase spaces / phase portraits, differing from most commonly used models [74-76] in the 
projection surface method of trajectory visualization, but not equivalent to that is called in 
most classical works [77-81] a projection of phase spaces (of one or another dimension). 
Due to the perspective nature of this visualization, during non-optimal rendering, there is 
a widening / shrinking of points or areas of phase space, depending on the coordinate, so 
for now this method is mostly a simple and accessible method of heuristically valuable vis-
ualization than a geometrically accurate mapping method. However, this problem can be 
quickly resolved by continuing the code development (the suboptimal images presented 
above can only illustrate what this visualization technique can detect and show to the us-
er). 

In principle, generalization of visualization using Poincaré spheres to a wider area of 
applications is possible. For this purpose, such elementary transitions as the transition to 
the Riemann sphere (mathematically corresponding to the Poincaré sphere) or the Bloch 
sphere for visualization / “representation” of phase spaces are feasible [82]. The re-
strictions on the applicability of these representations are of a definitive nature, since the 
same Riemann sphere can be considered as a synonym for the extended complex plane or, 
more correctly, as a sphere with a stereographic projection into a plane identified with the 
complex plane. It is optimal to use its interior of constant (negative) curvature in the re-
gion of sublight speeds, and the directions (and trajectories of the processes) correspond to 
time. At the same time, the interior of the Bloch sphere, historically identified in polariza-
tion optics with the Poincaré sphere, used for three-dimensional representation of Stokes 
parameters and indication of polarization types by Jones vectors, is geometrically struc-
tured like an ordinary ball. There are significantly  more applications of the Bloch sphere in 
physics and cybernetics than applications of the Poincaré sphere in polarization optics and 
the above-mentioned related fields of science. Thus, from the point of view of visualization 
for the analysis of non-classical computing systems, the use of the Bloch sphere to control 
quantum calculations using qubits and quantum cells with a large number of states or de-
grees of freedom (for example, qutrits - quantum analogues of the measurement units of 
the amount of information sources with 3 equally probable sources) seems to be promis-
ing. In this regard, it is noteworthy that the number of articles using the Bloch sphere to 
represent works with qubits has increased since 2010 (and maintains this dynamics to the 
present) [83-91], and since the mid-2010s it was joined by a set of works with geometric 
generalization and multidimensional variations of the Bloch sphere for qutrits [92,93]. 

It is noteworthy that the dimension of models of two qubits in the Bloch sphere models 
can correspond to the geometric algebra of six-dimensional (6D) Euclidean vector space 
[94], while the Riemann sphere for quantum mechanics (including when analyzing the 
transmission and processing of quantum information of qubits and qutrits) is used in pa-
rameterization of the system state described by two-dimensional space, and therefore ge-
ometric and “geodesic” coordinates are applicable to it. However, on the Bloch sphere it is 
possible to visualize both geodesic and zero-phase curves of the multidimensional state 
space [95]. The authors of [95] write: “A geometric representation of the state space of an 
n-level quantum system is necessary to characterize the system. One possible way to 
achieve this is to understand the structure of geodesic and zero phase curves in the state 
space. Zero phase curves are paths along which there is no accumulation of geometric 



 

phase, while geodesics curves give the shortest distance between any given two points and 
are special cases of zero phase curves". And further: “The state space for a two-level system 
is a Bloch sphere and its geodesics - great circles” (on a sphere), and “finding geodesics is 
not a trivial task in systems of a higher level” [Ibid]. But, obviously, with the use of a num-
ber of exotic constructions, such as the "Majorana star representation" (the famous Ma-
jorana transformation, also known as the "Majorana stellar representation"), the problem 
of high-dimensional representation can be effectively solved. At the same time, it is obvi-
ous that the representation of any oscillatory / wave and quantum systems on the Poincaré 
or Bloch sphere is, from the standpoint of geometry, equivalent, which makes it possible to 
achieve (complete) algorithmic unification. Accordingly, the same representation or visual-
ization format can be used for photonic qubits and for electronic qubits (which is also good 
for Riemann spheres that parameterize the states of systems described in 2D, such as the 
spins of massive fermions / spin 1/2 particles such as electrons). 

Therefore, from our point of view, in the long term we can talk about the representation 
on the Poincaré sphere / Bloch sphere / Riemann sphere of arbitrary components of such 
computational approaches, especially considering that specific effects (for example, quan-
tum decoherence [96]) for qubits in spin-Fermion models have been studied since the end 
of 2000s, works on quantum computing with 1/2 spin particles have been carried out al-
most since the same time (and up to the present) [97-101], and representations of fermions 
into qubits have been used since the second half of the last decade [102-107]. Note that 
Majorana fermion qubits (Majorana fermions in solid state physics are unique (quasi-
)particles that are their own antiparticles) also exist [108,109]. It is well known that qua-
siparticles with similar properties were detected in experiments on semiconductor nan-
owires, and therefore implementation of qubits and, accordingly, quantum computing (es-
pecially spin-orbital qubits encoded by quasiparticles-holes) on such semiconductor nan-
owires is typical [110- 112]. Such systems based on semiconductor nanowires that are 
prone to self-organization or self-assembly (conservative self-organization) [113-118] can 
be studied using methods of nonlinear dynamics and indication or representation of the 
phase spaces on Poincaré / Bloch-type spheres. Application of the methods used in self-
organization and synergetics (in its broad sense) to the non-classical forms of computing 
discussed above can promote the development of research on self-organizing quantum 
computing systems using their representations on a sphere. The latter assumption is the 
more plausible, the more work has recently appeared on quantum self-organizing circuits 
and networks, including neural networks with fuzzy logic and self-organizing maps (self-
organizing feature maps - SOFMs) by Kohonen (although some of them speculate but do 
not implement real quantum computing - which can lead to the disintegration of this re-
search direction, due to the profanation of the meanings of terms due to their reification or 
metonymy for the sake of “fashionable” research and application areas [119-126]. For this 
reason, at the time of completion of this article (2022-2023), we can speak about the tran-
sition of the applicability areas of the proposed approach to visualization not only in the 
field of classical self-oscillatory and self-organizing nonlinear systems, but also in the field 
of quantum structures and quantum computing systems. 

Conclusion 
The first preprint of this work was published in 2009 during the period of working of 

the first author in the scientific research department of Moscow State Regional University 
on the analysis of chemical oscillations and reaction-diffusion processes [127]. That manu-
script did not consider bibliographic data in this area, but only provided formulas, codes 
and visualization results on the Poincaré sphere for experimental data obtained before 
2009. 

The second version of the preprint with bibliographic analysis was prepared in 2012. It 
considered applications in cardiology and cellular electrophysiology, which was associated 



 

with the active collaboration with the colleagues from the Brain Research Department of 
the Neurology Scientific Center of the Russian Academy of Medical Sciences and the De-
partment of Anatomy and Physiology of Humans and Animals. In this case, initial data in-
cluded experimental data obtained in the latter institute, which were in the format of files 
of electrophysiological measurements read by the AD Instruments ADC programs (unfin-
ished series of works [128-130]). 

The third version of this article, indicating the possibilities of application in the analysis 
of the transient processes in impedance counters (so-called “radiofrequency  cytometers”), 
was prepared in 2016 during the period of work on the projects on the design of laborato-
ries on a chip for cytological diagnostics. At the same time, while working on the analysis 
of ion cyclotron resonance mass spectra, the author has prepared an unclaimed presenta-
tion on the Poincaré sphere application in the analysis of the initial data obtained by ICR 
and a number of combined methods using phase portraits and a number of complex spec-
tral methods [131,132]. 

All these versions have currently turned out to be unclaimed, due to the breakup of the 
group in 2018-2019 and the loss of the laboratory facilities necessary to continue this work. 
Organizational and global reasons force us to publish the text in its current form, since we 
cannot guarantee that during the months required to prepare for submission and publica-
tion of all these versions, there will be no alleged force majeure circumstances that prevent 
us from continuation of this work. However, fixing the priority in this area, the author po-
sitions his interest in continuing work in this direction in the coming years and in using 
mathematical and algorithmic developments of the past decade to develop research in the 
field of self-organization in semiconductor and other systems with a projection on the 
Poincaré sphere and its above-mentioned geometric analogues. 
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